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Context



Photo-realistic image generation works

http://www.whichfaceisreal.com/
Tero Karras, Samuli Laine, and Timo Aila. ”A style-based generator architecture for generative adversarial networks.” CVPR2019
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Photo-realistic image generation works

(the real one is the left one)

http://www.whichfaceisreal.com/
Tero Karras, Samuli Laine, and Timo Aila. ”A style-based generator architecture for generative adversarial networks.” CVPR2019 2



Applications: Filters

Snapchat / Instagram filters
Rameen Abdal, et al. ”Image2StyleGAN++: How to Edit the Embedded Images?”, CVPR2020
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Applications: DeepFakes

Deepfakes, video falsification
https://www.youtube.com/watch?v=j LuZlg6xXU
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Applications: Image colorization

Image restoration, coloration
Xuan Luo, et al. ”Time-Travel Rephotography”, on Arxiv, 2020
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Applications: Inpainting

Live photo edition
Liu Guilin, et al. ”Image inpainting for irregular holes using partial convolutions.” ECCV2018 6



Applications: Style transfer

Yijun Li, et al. ”A Closed-form Solution to Photorealistic Image Stylization”, ICCV2017
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Applications: Image transfiguration

Jun-Yan Zhu, et al. ”Unpaired image-to-image translation using cycle-consistent adversarial networks.” Proceedings of the IEEE international

conference on computer vision. 2017.
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Generative Adversarial Networks

Context

Generative Adversarial Networks

Image reconstruction

Data augmentation of polarimetric datasets

Conclusion
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Generative modeling
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Latent-variable models
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Latent-variable models

Problem: We can’t access the distributions 12



An analogy

13



An analogy

14



An analogy

15



Deep Neural Networks

Discriminator
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Deep Neural Networks

Generator
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Generative Adversarial Networks

Two networks, a generator G and a discriminator D :

• Generator: produces synthetic data from a random z ∼ pZ , where pZ is a known

distribution

• Discriminator: binary classifier, tries to distinguish real samples from fake ones

Ian Goodfellow, et al. ”Generative adversarial nets.” NeurIPS2014
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Generative Adversarial Networks

Two networks, a generator G and a discriminator D :

• Generator: produces synthetic data from a random z ∼ pZ , where pZ is a known

distribution

• Discriminator: binary classifier, tries to distinguish real samples from fake ones

min
G

max
D

L(D,G )= E
x∼pX

[
log(D(x))

]
+ E

z∼pZ

[
log(1−D(G (z)))

]
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GAN training
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Controlling the generation
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Controlling the generation

Adding labels to the GAN
25



Generative Adversarial Networks

Two networks, a generator G and a discriminator D :
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Conditional GAN

• Conditional variant of the GANs

• A constraint/label c is simply given as an input to both G and D

• Works well for generating image with a class constraints

min
G

max
D

L(D,G )= E
c∼pC

x∼pX |C

[
log(D(x, c))

]
+ E

z∼pZ
c ′∼pC

[
log(1−D(G (z, c ′), c ′))

]

Medhi Mirza, et al. ”Conditional Generative adversarial nets.”, on Arxiv, 2014
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Question: Can GANs be conditioned in any

way other than with labels ?

A solution: Auxiliary tasks
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Question: Can GANs be conditioned in any

way other than with labels ?

A solution: Auxiliary tasks
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Contributions
• Image reconstruction

• Polarimetric data generation
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Image reconstruction

Context
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Image reconstruction
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Problem

Objectives

• Generation under pixel constraints

• Unstructured information

Differences with inpainting

• Very few information (∼ 0.5%)

• Full-size image generation

(a) Original

Image

(b) Binary

Mask

(c) Pixel

Constraints
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Constrained GAN

Theoretical objective

min
G

max
D

L(D,G )= E
x∼pX

[
log(D(x))

]
+ E

z∼pZ
c∼pC

[
log(1−D(G (z, c)))

]
GAN task

s.c. c = M(c)� G (z, c), where M(C ) gives the binary mask of the constraints

Difficult to solve !
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Relaxation of the constrained problem

Reconstruction:

c = M(c)� G (z, c) + E

where E ∈ Rn×m is a random noise (model error).

Maximum A Posteriori:

x∗ = arg max
x

log pX |C (x|c)

= arg max
x

log pX (x) + log pC |X (c |x)(+const)

Parametrized MAP: x→ G (z, c)

G ∗ = arg max
G

E
c∼pC
z∼pZ

[
log pX (G (z, c)) + log pC |X (C |G (z, c))

]
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Relaxation of the constrained CGAN

Recall G ∗ = arg max
G

E
c∼pC
z∼pZ

[
log pX (G (z, c)) + log pC |X (C |G (z, c))

]
Assumption: E ∼ N [0,Σ2], for c = M(c)� G (z, c) + E . Then

E
c∼pC
z∼pZ

log pC |X (C |G (z,C ))
]

= E
z∼pZ
c∼pC

[
‖c −M(c)� G (z,C )‖22

]
Final problem:

minG maxD Lreg (D,G ) = L(D,G ) + λEz∼pZ
c∼pC

[
‖c −M(c)� G (z, c)‖22

]
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Relaxation of the constrained CGAN

Final problem:

min
G

max
D

Lreg (D,G ) = L(D,G ) + λ E
z∼pZ
c∼pC

[
‖c −M(c)� G (z, c)‖22

]
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Evaluation

Metrics

• Respect of the constraints: Mean Square Error on constrained

pixels

• Visual quality: No explicit way of measuring !

Solution: Fréchet Inception Distance

Martin Heusel et al., ”GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium”, NeurIPS2017
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Fréchet Inception Distance

Martin Heusel et al., ”GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium”, NeurIPS2017 37



Experimental setting

Task: Hyperparameter search on λ

• Objective: find evidence of a controllable trade-off between quality and respect of

the constraints

• FashionMNIST dataset, 10% of the set used to sample constraints

Networks architecture: DCGAN-like1

• Very small networks

• Generator: 2 deconvolutional layers + 1 dense

• Discriminator: 2 convolutional layers + 1 dense

1
Alec Radford et al., ”Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR2016

38



Results on FashionMNIST

• Trade-off clearly visible

• Adding constraints can enhance visual

quality

• Reconstruction task enhances both

quality and respect of constraints
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Results

Practical application: underground terrain dataset

• Collaboration with SCK.CEN (Belgium)

• Hard patterns to learn, higher dimension (200x200)

• Can be learned with fully convolutional GANs → fewer

parameters, shorter training time
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Data augmentation of polarimetric

datasets

Context

Generative Adversarial Networks

Image reconstruction

Data augmentation of polarimetric datasets

Conclusion
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Object detection in road scenes
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Object detection in road scenes

Bad weather conditions

43



Polarized light
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Polarimetric camera
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Polarimetric imaging

Polarimetric image:

I0 I45 I90 I135

Problem: no large labeled datasets

PolarLITIS: 2,469 (paired) labeled images, BDD100K: 100,000 labeled RGB images
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Polarimetric imaging

Polarimetric image:

I0 I45 I90 I135

Problem: no large labeled datasets

PolarLITIS: 2,469 (paired) labeled images, BDD100K: 100,000 labeled RGB images

46



Polarimetric image generation

Image translation: RGB to polarimetric

Objective
Data augmentation in the polarimetric domain (very few existing large-size datasets)

Ill-posed problem !
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Polarimetric image generation

Image translation: RGB to polarimetric

Objective
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Ill-posed problem !

47



Domain transfer: a first case of auxiliary task

No paired data !
48



Domain transfer
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CycleGAN

Adversarial task Cyclic consistency: reconstruction task
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Properties of polarimetric images

Polarimetric image: 1 channel per polarizer angle

y = [y0, y45, y90, y135]>

Stokes parameters Vector that describe the polarization state in terms of intensity

(s0) and degrees of polarization (s1, s2)

s = [s0, s1, s2]>

Computing the Stokes parameters

yi ,j = Asi ,j , ∀i ≤ n, j ≤ p

si ,j = f (yi ,j ,A), ∀i ≤ n, j ≤ p

where A is the calibration matrix, constant and unique to the camera.
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Calibration constraint

Problem 1: A is not invertible for all cameras

In our works, we use a non square calibration matrix

A =
1

2


1 cos(2α1) sin(2α1)

1 cos(2α2) sin(2α2)

1 cos(2α3) sin(2α3)

1 cos(2α4) sin(2α4)

 =
1

2


1 1 0

1 0 1

1 −1 0

1 0 −1


Problem 2: hard constraints on s

s20 ≥ s21 + s22

Squared sum of polarized intensities cannot exceed squared total light intensity
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Proposed solutions

Solution to problem 1: use A† is the pseudo-inverse of A as

ŝi ,j = A†yi ,j∀i ≤ n, j ≤ p .

Property

yi ,j = AA†yi ,j is satisfied iff yi ,j ∈ ker(AA† − Id).

For our specific calibration matrix A the solution to this constraint is

{
y =

[
y0 y45 y90 y135

]> ∣∣∣y0 + y90 = y45 + y135

}
.

Calibration auxiliary task: Relaxation of the constraint

Lcalib(y) = E
y∼pY

||yi ,j − AA†yi ,j ||2
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Proposed solutions

Solution for problem 2: Optical

admissibility auxiliary task. Since

s20 ≥ s21 + s22 ,

we can relax this constraint by minimizing

Loptical(s) = E
y∼pY

max
(
ŝ1

2 + ŝ2
2 − ŝ0

2, 0
)
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Our approach
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Visual results
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Quantitative evaluation: object detection task
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Experimental evaluation

Average precision up to 9% improvement in object detection on polarimetric images 58



Perspectives: projection operator

Optical constraint as a set of admissible solutions

Recall the optical constraint

s20 ≥ s21 + s22

Can be formulated as a set of solutions

C =

{
(s0, s1,2) ∈ S

∣∣∣ ‖s1,2‖2 ≤ s0, s1,2 =

[
s1
s2

]}
,
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Perspectives: projection operator

Closed-form projection operator

ΠC(s0, s1,2) =

{
(s0, s1,2) if ‖s1,2‖2 ≤ s0
1+s0/‖s1,2‖2

2 (‖s1,2‖2, s1,2) if ‖s1,2‖2 > s0

Two different approaches

• Project the output of the GAN

(ŷ = G (x)→ ŷ = AΠCA
†G (x))

• Optimize a proximal distance
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Perspectives: projection operator

Proximal distance

ΩC = ‖A†G (y)− ΠC(A†G (y))‖2

with closed-form gradient

∇GΩC(s) = (s− ΠC(s))×

{
0 if ‖s1,2‖2 ≤ s0
∇G s−∇G

1
2

[
(1 + s0

‖s1,2‖2 )(‖s1,2‖2, s1,2)
]

if ‖s1,2‖2 > s0
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Conclusion
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Conclusion

Auxiliary tasks

• Powerful approach for conditioning of GANs

• Leverage on domain-specific knowledge instead of labeled data

• Adapted to different kind of conditioning (equality, inequality, set membership, ...)
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Main contributions

Contributions in image reconstruction

• Proposed a controllable approach for image reconstruction with very few pixels

• Highlighted a trade-off between quality and conditioning of the images

• Applied it to image reconstruction and geology
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Main contributions

Contributions in polarimetric image generations

• Proposed a set of constraints for generating polarimetric images

• Proposed an approach for transferring color images to the polarimetric domain

• Showed that generated polarimetric images enhance performances of detection

models

• Produced a polarimetric version of BDD100K and KITTI
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Perspectives

Image reconstruction

• More work on the architectures

• Extending the approach to different prior distributions

• Extending the approach to different settings

Polarimetric image generation

• Enhance the visual quality of smaller objects with better architectures

• Experiment with the projection operator
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• Dilated Spatial Generative Adversarial Networks for Ergodic Image

Generation. Cyprien Ruffino, Romain Hérault, Eric Laloy, and Gilles Gasso, In:

CAp 2017

• Pixel-Wise Conditioning of Generative Adversarial Networks. Cyprien

Ruffino, Romain Hérault, Eric Laloy, and Gilles Gasso, In: ESANN 2019

• Pixel-Wise Conditioned Generative Adversarial Networks for Image

Synthesis and Completion. Cyprien Ruffino, Romain Hérault, Eric Laloy, and

Gilles Gasso, In: Neurocomputing

• Generating Polarimetric-Encoded Images Using Constrained

Cycle-Consistent Generative Adversarial Networks. Rachel Blin*, Cyprien

Ruffino*, Samia Ainouz, Romain Hérault, Gilles Gasso, Fabrice Mériaudeau, and

Stéphane Canu, In: Currently in Preparation

• Gradient-Based Deterministic Inversion of Geophysical Data with
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Cyprien Ruffino, Romain Hérault, Gilles Gasso, and Diederik Jacques, In:
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Thank you for your attention ! :)
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Appendix
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Noises and distances

Reconstruction error Recall that we want to get maxx log pC |X (c |x). We had

Ê = c −M(c)� G (z , c) (We initially assumed E ∼ pE (pE = N (0,Σ2)))

As a distance: Lrec = Div(pÊ ||pE )

Exponential family of distributions: pψ(x, θ) = h(x) exp(x>θ − ψ(θ)− gψ(x)) 2

Distribution Distance measure

Gaussian Squared Euclidian Distance

Multinomial Kullback-Leibler divergence

Exponential Itakura-Saito distance

Poisson Relative entropy
2ψ, h and gψ convex Legendre function
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Noises and distances

Generalized distance measures with Bregman divergence

Ê = c −M(c)� G (z , c) (We initially assumed E ∼ pE (pE = N (0,Σ2)))

As a distance: Lrec = Div(pÊ ||pE )

We can instantiate this with a Bregman divergence

Lrec = Dφ

(
pÊ ||pE

)
,

with φ(θ) a convex function on θ the parameters of the distribution pE .
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Bregman divergences for exponential family distributions

Distribution pE φ(θ) Dφ(pÊ ||pE )

1D Gaussian 1
2σ2µ

2 Eε∼pÊ 1
2σ2 (ε− µ)2

1D Poisson λ log λ− λ Eε∼pÊ ε log( ελ)− ε+ λ

1D Bernoulli q log q + (1− q) log(1− q) Eε∼pÊ ε log( εq ) + (1− ε) log( 1−ε
1−q )

1D Binomial Nq log(NqN ) + (N − Nq) log(N−NqN ) Eε∼pÊ ε log( ε
Nq ) + (N − ε) log( N−ε

N−Nq )

1D Exponential − ln(1/λ)− 1 Eε∼pÊ ε
1/λ − ln( ε

1/λ)− 1

dD Gaussian 1
(2σ2)
‖µ‖2 EE∼pÊ

1
2σ2 ‖E − µ‖2

dD Multinomial
∑d

j=1Njqj log(
Njqj
N ) EE∼pÊ

∑d
j=1 Ej log(

Ej

Njqj
)

Arindam Banerjee et al., ”Clustering with Bregman Divergences”, JMLR 2005
72



Evolution of the visual quality
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Full CycleGAN

GAN
cost

GAN
cost

L2
cost

L2
cost

x1

x2

G1/2

G2/1

D2

D1
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Generic auxiliary loss with task model

Judy Hoffman et al., ”CyCADA: Cycle-consistent adversarial domain adaptation”,

ICML2018
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