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Problem

Objective

• Image reconstruction task
• Generation under pixel
constraints

• Motivation: applications in
geosciences

Differences with inpainting

• Very few information
(∼ 0.5%)

• Full-size image generation
• Unstructured information

(a) Original
Image

(b) Regular
Inpainting

(c) Pixel
Constraints
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Generative Adversarial Networks [GPAM+14]

Two networks, a generator G and a discriminator D :

• Generator: produces synthetic data from a random z ∼ Pz,
where Pz is a known distribution

• Discriminator: binary classifier, tries to distinguish real samples
from fake ones

min
G

max
D
L(D,G)= E

X∼Pr

[
log(D(X))

]
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z∼Pz
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log(1−D(G(z)))
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Conditional GAN [MO14]

• Conditional variant of the GANs
• A constraint/label c is simply given as an input to both G and D
• Works well for generating image with a class constraints

min
G

max
D
L(D,G)= E

X∼Pr
C∼PC|X

[
log(D(X, C))

]
+ E

z∼Pz
C′∼PC

[
log(1−D(G(z, C′), C′))
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Constrained CGAN

Theoretical objective
Explicit verification, hard-constraint on the respect of C
min
G

max
D
L(D,G)= E

X∼Pr
C∼PC|X

[
log(D(X, C))

]
+ E

z∼Pz
C′∼PC

[
log(1−D(G(z, C′), C′))

]
s.c. C = M(C)⊙ G(z, C)

where M(C) gives the binary mask of the constraints

Problem
Strictly constrained objective is non-differentiable
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Constrained CGAN

Theoretical objective
Explicit verification, hard-constraint on the respect of C
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Relaxation of the constrained CGAN

Our approach
Relaxation of the strict constraints by a regularization term

min
G

max
D
Lreg(D,G) = L(D,G) + λ E

z∼Pz
C∼PC

[
∥C−M(C)⊙ G(z, C)∥22

]
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Experiments i

Task: Hyperparameter search on λ

• Objective: find evidence of a controllable trade-off between
quality and respect of the constraints

• Experiments repeated 10 times each

Metrics

• Respect of the constraints: Mean Square Error on constrained
pixels

• Visual quality: Fréchet Inception Distance [HRU+17]:
distance between the distributions of the features of real and
generated samples at the output of a deep classifier.
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Experiments ii

Datasets

• MNIST and FashionMNIST
• Split in train, validation and test sets
• 10% of each set used to sample constraints, then discarded

Networks architecture

• DCGAN [RMC15]-like, with only 2 convolutional/transposed
convolutional layers in D and G
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Results on FashionMNIST

(a) Original
Image

(b) Constraints (c) Generated
Image

(d) Satisfied
Consts.

This method can generate samples that respects pixel precise
constraints
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Results on FashionMNIST

MSE / FID relative to λ
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• The constraints seem able to enhance quality
• From λ = 0.1 upwards, there seem to be a trade-off between
MSE and FID
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Results on FashionMNIST
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• Trade-off clearly visible
• Adding constraints can enhance visual quality
• Regularization enhance both quality and respect of constraints
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Results on FashionMNIST

Some generated samples at λ = 1 (best ratio between quality and
respect of the constraints)
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Conclusion

Conclusion

• Conditional GANs can learn pixel-wise constraints
• The L2 regularization term allows to control a trade-off between
visual quality and respect of the constraints

Extensions

• Applications on real-world datasets
• Extension to other kind of constraints
(moments on zones, ...)
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