## Pixel-wise Conditioning of Generative Adversarial Networks

Cyprien Ruffino<sup>1</sup> , Romain Hérault<sup>1</sup> , Eric Laloy<sup>2</sup> and Gilles Gasso<sup>1</sup> December 6, 2019

<sup>1</sup>Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen, LITIS, 76 000 Rouen, France <sup>2</sup>Belgian Nuclear Research, Institute Environment, Health and Safety, Boeretang 200 - BE-2400 Mol, Belgium



## Problem

## Objective

- Image reconstruction task
- Generation under pixel constraints
- Motivation: applications in geosciences

## Differences with inpainting

- Very few information  $(\sim 0.5\%)$
- Full-size image generation
- Unstructured information



(a) Original Image



(b) Regular Inpainting



**(c)** Pixel Constraints

## Generative Adversarial Networks [GPAM+14]

Two networks, a generator G and a discriminator D :

- **Generator**: produces synthetic data from a random  $z \sim P_z$ , where  $P_z$  is a known distribution
- **Discriminator**: binary classifier, tries to distinguish real samples from fake ones

$$\min_{G} \max_{D} L(D,G) = \mathbb{E}_{X \sim P_{r}} \left[ \log(D(X)) \right] + \mathbb{E}_{Z \sim P_{z}} \left[ \log(1 - D(G(Z))) \right]$$



## Conditional GAN [MO14]

- Conditional variant of the GANs
- A constraint/label c is simply given as an input to both G and D
- Works well for generating image with a class constraints

$$\min_{G} \max_{D} L(D,G) = \mathbb{E}_{\substack{X \sim P_r \\ C \sim P_{C|X}}} \left[ \log(D(X,C)) \right] + \mathbb{E}_{\substack{Z \sim P_z \\ C' \sim P_C}} \left[ \log(1 - D(G(Z,C'),C')) \right]$$



#### Theoretical objective

Explicit verification, hard-constraint on the respect of C

$$\min_{G} \max_{D} L(D,G) = \mathop{\mathbb{E}}_{\substack{X \sim P_r \\ C \sim P_{C|X}}} \left[ \log(D(X,C)) \right] + \mathop{\mathbb{E}}_{\substack{Z \sim P_z \\ C' \sim P_C}} \left[ \log(1 - D(G(Z,C'),C')) \right]$$

s.c.  $C = M(C) \odot G(z, C)$ 



where M(C) gives the binary mask of the constraints

## Theoretical objective

Explicit verification, hard-constraint on the respect of C

$$\min_{G} \max_{D} L(D,G) = \mathop{\mathbb{E}}_{\substack{X \sim P_r \\ C \sim P_{C|X}}} \left[ \log(D(X,C)) \right] + \mathop{\mathbb{E}}_{\substack{Z \sim P_z \\ C' \sim P_C}} \left[ \log(1 - D(G(Z,C'),C')) \right]$$

s.c.  $C = M(C) \odot G(z, C)$ 



where M(C) gives the binary mask of the constraints

#### Problem

Strictly constrained objective is non-differentiable

Our approach

Relaxation of the strict constraints by a regularization term

 $\min_{G} \max_{D} L_{reg}(D,G) = L(D,G) + \lambda \mathop{\mathbb{E}}_{\substack{Z \sim P_z \\ C \sim P_C}} \left[ \left\| C - M(C) \odot G(Z,C) \right\|_2^2 \right]$ 



#### Task: Hyperparameter search on $\lambda$

- Objective: find evidence of a controllable trade-off between quality and respect of the constraints
- Experiments repeated 10 times each

#### Metrics

- Respect of the constraints: Mean Square Error on constrained pixels
- Visual quality: Fréchet Inception Distance [HRU<sup>+</sup>17]: distance between the distributions of the features of real and generated samples at the output of a deep classifier.

#### Datasets

- MNIST and FashionMNIST
- Split in train, validation and test sets
- 10% of each set used to sample constraints, then discarded

#### Networks architecture

• DCGAN [RMC15]-like, with only 2 convolutional/transposed convolutional layers in *D* and *G* 



This method can generate samples that respects pixel precise constraints

#### MSE / FID relative to $\lambda$



- The constraints seem able to enhance quality
- + From  $\lambda=$  0.1 upwards, there seem to be a trade-off between MSE and FID



- Trade-off clearly visible
- Adding constraints can enhance visual quality
- · Regularization enhance both quality and respect of constraints



Some generated samples at  $\lambda = 1$  (best ratio between quality and respect of the constraints)

## Conclusion

## Conclusion

- Conditional GANs can learn pixel-wise constraints
- The *L*2 regularization term allows to control a trade-off between visual quality and respect of the constraints

#### Extensions

- Applications on real-world datasets
- Extension to other kind of constraints (moments on zones, ...)





Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.

#### Generative adversarial nets.

In Advances in neural information processing systems, pages 2672–2680, 2014.



Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.

# Gans trained by a two time-scale update rule converge to a local nash equilibrium.

In Advances in Neural Information Processing Systems, pages 6626–6637, 2017.



Mehdi Mirza and Simon Osindero.

#### Conditional generative adversarial nets.

arXiv preprint arXiv:1411.1784, 2014.



Alec Radford, Luke Metz, and Soumith Chintala.

Unsupervised representation learning with deep convolutional generative adversarial networks.

arXiv preprint arXiv:1511.06434, 2015.