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Background

Motivations

• Geostatistical simulation:
subsurface modeling

• Models underground water
channels

• Need to generate ergodic
(texture-like) data

• No global dependencies in the
data
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Dataset

Classical geostatistical dataset : 384× 384px samples from a
2500× 2500px binary subsurface model
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Generative Adversarial Networks[GPAM+14]

Principle

• Two networks : a generator G and a
discriminator D

• The generator produces synthetic
data from a random noise

• The discriminator tries to
distinguish synthetic data from real
ones

• G aims to maximize the error of D
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Spatial Generative Adversarial Networks[JBVR17]

Spatial Generative Adversarial Networks

• Fully-convolutional : generates globally ergodic data
• Used in texture generation tasks
• Changes in the input only affects a local part of the output
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Previous works [LHJL18]

SGAN architecture

• Based on DCGAN [RMC15]
• Generator : 5 deconvolutional layers
• Discriminator : 5 convolutional
layers

Drawbacks

• Generated data is noisy and blurry
• Ad-hoc solutions : median filtering
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Dilated Convolution [YK15]

Dilated Convolutions

• The filter’s weights are
spaced with zeros

• Allows to control the size of
the filters without increasing
the number of parameters

• Larger receptive field without
pooling
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Dilated Spatial GANs

Generator architecture

• Same first five layers as the previous approach
• We add 5 dilated convolutional layers with ReLU activations
• 5× 5 filters with dilation from 1 to 5
• This progressively increase the receptive field
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Results: Samples

Previous method Our method
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Results: Connectivity functions

Previous method Our method

• Represents the geostastistical properties of the data
• Green curves: connectivity functions of generated samples
• Blue curves : max, min and mean values of real samples
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Results: Metrics

Total Variation Norm

Real SGAN Our approach
TVi 5.37× 10−2 7.41× 10−2 6.07× 10−2

TVa 5.72× 10−2 8.02× 10−2 6.53× 10−2

χ2 distance between features

SGAN Our approach
LBP R = 1 10.13 2.39
LBP R = 2 24.26 2.33
HOG 5.79× 10−4 2.37× 10−4
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Conclusion

Conclusion

• Dilated convolutions can enhance the visual quality of the
samples

• We obtain significantly better results than the previous method

Extensions

• Applications to similar tasks : natural texture generation
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